If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+35n-42=0
a = 7; b = 35; c = -42;
Δ = b2-4ac
Δ = 352-4·7·(-42)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-49}{2*7}=\frac{-84}{14} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+49}{2*7}=\frac{14}{14} =1 $
| 3x-2=2×+5 | | 2y+5-7=0 | | y/5+4=0 | | 15p=3p+48 | | 7+10x+x+7+9=41 | | -6+7y=78 | | 10(x-1/3)=5/12 | | 3+x=180 | | 2(5+y)=2 | | 2(-3y+9)=12 | | 5+x3=29+x | | 5(n+2)=10n-25 | | x+(3x+15)=140 | | 5x(3)=x+29 | | -19+5n=-4n+17 | | 0.2(0.4^4x)=4 | | 1/3a-8=1/2a+5 | | x+(3x+15)=150 | | 3(2+2q)=36 | | 7(x-7)+8=-41 | | 7(x-7)+8=4 | | z+61+61=180 | | -5(-1+8c)+7(c-3)=50 | | z+42+42=180 | | 21+3y-4=4+12y-24 | | z+37+37=180 | | -12x+16+5x+10=-6 | | (-9x+7)(-7x+9)=(-9x+7)(-7x+9) | | t+74+74=180 | | 0.75x+8=1.25x+6 | | 12=6m-7 | | (4/3)x+10=(50/3)+x |